
Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

LOW DENSITY AND LATENCY OPTIMISED MULTI OPERAND

BINARY ADDER USING MODIFIED CARRY BYPASS ADDITION

1

 AKKIPALLI GOPI SRUJANA,
2

 Dr B. RAJA RAO

1

PG Student, Dept. of ECE, ELURU COLLEGE OF ENGINEERING AND TECHNOLOGY, Eluru, A.P

2

Professor, H.O.D, Dept. of ECE, ELURU COLLEGE OF ENGINEERING AND TECHNOLOGY, Eluru, A.P

ABSTRACT: Addition is one of the most basic operations performed in all computing units, including

microprocessors and digital signal processors. It is also a basic unit utilized in various complicated

algorithms of multiplication and division. Efficient implementation of an adder circuit usually revolves

around reducing the cost to propagate the carry between successive bit positions. Hence, a new high-

speed and area efficient adder architecture is proposed using pre-compute bitwise addition followed by

carry prefix computation logic to perform the three-operand binary addition that consumes substantially

less area, low power and drastically reduces the adder delay. Further, this project is enhanced by using

Modified carry bypass adder to further reduce more density and latency constraints. Modified carry skip

adder introduces simple and low complex carry skip logic to reduce parameters constraints.

KEYWORDS: Parallel Prefix, Brent – Kung, Kogge –Stone, Carry save addition, pre-compute bitwise

addition followed by carry prefix, Carry skip addition.

I.INTRODUCTION: Besides technological scaling, advances in the field of computer architecture

have also contributed to the exponential growth in performance of digital computer hardware. The flip-

side of the rising processor performance is an unprecedented increase in hardware and software

complexity. Increasing complexity leads to high development costs, difficulty with testability and

verifiability, and less adaptability. The challenge in front of computer designers is therefore to opt for

simpler, robust, and easily certifiable circuits. Computer arithmetic, here plays a key role aiding

computer architects with this challenge. It is one of the oldest sub-fields of computer architecture. The

bulk of hardware in earlier computers resided in the accumulator and other arithmetic/logic circuits.

Successful operation of computer arithmetic circuits was taken for granted and high performance of

these circuits has been routinely expected. This context has been changing due to various reasons. First,

at very high clock rates, the interfaces between arithmetic circuits and the rest of the processor become

critical. Arithmetic circuits can no longer be designed and verified in isolation. Rather an integrated

design optimization is required. Second, optimizing arithmetic circuits to meet the design goals by taking

advantage of the strengths of new technologies, and making them tolerant to the weakness, requires a re-

examination of existing design paradigms. Finally, incorporation of higher-level arithmetic primitives

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

into hardware makes the design, optimization and verification efforts highly complex and interrelated.

The core of every microprocessor, digital signal processor (DSP), and data processing application-

specific integrated circuit (ASIC) is its datapath. With respect to the most important design criteria;

critical delay, chip size, and power dissipation, the datapath is a crucial circuit component. The datapath

comprises of various arithmetic units, such as comparators, adders, and multiplier [4]. The basis of

every complex arithmetic operation is binary addition. Hence, it can be concluded, that binary addition

is one of the most important arithmetic operation. The hardware implementation of an adder becomes

even more critical due to the expensive carry-propagation step, the evaluation time of which is

dependent on the operand word length. The efficient implementation of the addition operation in an

integrated circuit is a key problem in VLSI design [8]. Productivity in ASIC design is constantly

improved by the use of cell-based design techniques – such as standard cells, gate arrays, and field

programmable gate arrays (FPGA), and low-level and high-level hardware synthesis [13]. This asks for

adder architectures which result in efficient cell-based circuit realizations which can easily be

synthesized. Furthermore, they should provide enough flexibility in order to accommodate custom

timing and area constraints as well as to allow the implementation of customized adders. The tasks of a

VLSI chip are the processing of data and the control of internal or external system components. This is

typically done by algorithms which are based on logic and arithmetic operations on data items [10].

Applications of arithmetic operations in integrated circuits are manifold. Microprocessors and DSPs

typically contain adders and multipliers in their datapath. Special circuit units for fast division and

square-root operations are sometimes included as well. Adders, incrementers/decrementers, and

comparators are often used for address calculation and flag generation purposes controllers. ASICs use

arithmetic units for the same purposes. Depending on their application, they may even require

dedicated circuit components for special arithmetic operators, such as for finite field arithmetic used in

cryptography, error correction coding, and signal processing.

II. LITERATURE SURVEY: The Multi-Operand Adders are generally implemented in two methods

i.e Array Adders and Adder Tree structure. In Array Adder structure, two operands are added and

output is added with third operand and continues the chain of addition until to get final sum output. It

requires ‘K’ number of adder levels for addition of ‘K’ operands. But in case of Adder Tree structure

the number of levels to add ‘K’ operands is less than that of Array Adders. It groups ‘K’ number of

operands into sets of two operands. All the sets are added parallel in one level. The sum outputs from

first level again grouped into sets of two operands and perform addition. This process continues until to

get two operands and added in last level to obtain final sum. In each level it reduces number of

operands to half. Therefore it requires log2 K levels. The Adder Tree structure is faster than Adder

Array structure with same resources consumed by both configurations. But the Array Adder is having

regular routing than Adder Tree structure. The Ripple Carry Adder (RCA) or Carry Look Ahead

Adder (CLA) are two general Carry Propagate Adders used in the above methods i.e. Array Adder,

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

Adder Tree is Carry Propagate Adder. The delay of their CPA depends on bit length of operand. For

N-bit operand the of RCA proportional to N and for CLA it is proportional tolog2 N. To reduce the

delay these adders where implemented on FPGA by using dedicated carry chains [8]. The RCA on

FPGA using fast carry chain is simpler than any other CPA topologies at an expense of high hardware

cost [9]. The pipelining technique can be applied more effectively RCA [1]. The delay of Adder Tree

using CPA is high due to carry propagation along the bit length. Carry Save Adder tree is used as

another approach for implementing Multi-Operand Adders. Here the carry is directly propagated to

next level instead of propagating in the same as in case of CPA. The advantage of Carry Save Adder

(CSA) tree is utilized in ASIC implementation due to flexible routing. The critical path delay can be

minimized by optimizing the interconnection between Full Adders. But to implement on FPGA the

Ripple Carry Adder tree is preferred than CSA adder tree. When CSA tree is implemented on FPGA it

become slower than RCA tree due to routing delay of CSA. However, a straightforward implementation

on FPGAs [6] roughly requires double hardware than a carryripple adder, and does not exploit the fast

carry chain to improve speed.

III. PRE-COMPUTE BITWISE ADDITION FOLLOWED BY CARRY PREFIX

COMPUTATION

This method presents a new adder technique and its VLSI architecture to perform the three-operand

addition in modular arithmetic. The proposed adder technique is a parallel prefix adder. However, it

has four-stage structures instead three-stage structures in prefix adder to compute the addition of three

binary input operands such as bit-addition logic, base logic, PG (propagate and generate) logic and sum

logic. The logical expression of all these four stages are defined as follows,

Stage-1: Bit Addition Logic:

Stage-2: Base Logic:

Stage-3: PG (Generate and Propagate) Logic:

Stage-4: Sum Logic:

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

Fig1. Proposed three-operand adder; (a) First order VLSI architecture, (b) Logical diagram of bit

addition, base logic, sum logic, black-cell and grey-cell.

The proposed VLSI architecture of the three-operand binary adder and its internal structure is shown

in Fig. The new adder technique performs the addition of three n-bit binary inputs in four different

stages. In the first stage (bit-addition logic), the bitwise addition of three n-bit binary input operands is

performed with the array of full adders, and each full adder computes “sum (S_ i)” and “carry (cyi)”

signals as highlighted in Fig. 3(a). The logical expressions for computing sum (S_ i) and carry (cyi)

signals are defined in Stage-1, and the logical diagram of the bit-addition logic is shown in Fig. 3(b). In

the first stage, the output signal “sum (S_ i)” bit of current full adder and the output signal “carry” bit of

its right-adjacent full adder are used together to compute the generate (Gi) and propagate (Pi) signals in

the second stage (base logic). The computation of Gi and Pi signals are represented by the “squared

saltire-cell” as shown in Fig. 3(a) and there are n+1 number of saltire-cells in the base logic stage. The

logic diagram of the saltire-cell is shown in Fig. 3(b), and it is realized by the following logical expression,

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

The external carry-input signal (Cin) is also taken into consideration for three-operand addition in the

proposed adder technique. This additional carry-input signal (Cin) is taken as input to base logic while

computing the G0 (S_ 0 · Cin) in the first saltire-cell of the base logic. The third stage is the carry

computation stage called “generate and propagate logic” (PG) to pre-compute the carry bit and is the

combination of black and grey cell logics. The logical diagram of black and grey cell is shown in Fig.

3(b) that computes the carry generate Gi: j and propagate Pi: j signals with the following logical

expression,

The number of prefix computation stages for the proposed adder is (log2 n+1), and therefore, the

critical path delay of the proposed adder is mainly influenced by this carry propagate chain. The final

stage is represented as sum logic in which the “sum (Si)” bits are computed from the carry generate Gi:

j and carry propagate Pi bits using the logical expression, Si = (Pi _ Gi−1:0). The carryout signal (Cout)

is directly obtained from the carry generate bit Gn:0.

IV.PROPOSED CARRY SKIP ADDER:

The structure is based on combining the concatenation and the incrementation schemes [13] with the

Conv-CSKA structure, and hence, is denoted by CI-CSKA. It provides us with the ability to use simpler

carry skip logics. The logic replaces 2:1 multiplexers by AOI/OAI compound gates. The gates, which

consist of fewer transistors, have lower delay, area, and smaller power consumption compared with

those of the 2:1 multiplexer [7]. Note that, in this structure, as the carry propagates through the skip

logics, it becomes complemented. Therefore, at the output of the skip logic of even stages, the

complement of the carry is generated. The structure has a considerable lower propagation delay with a

slightly smaller area compared with those of the conventional one. Note that while the power

consumptions of the AOI (or OAI) gate are smaller than that of the multiplexer, the power

consumption of the proposed CI-CSKA is a little more than that of the conventional one. This is due to

the increase in the number of the gates, which imposes a higher wiring capacitance (in the noncritical

paths). Now, we describe the internal structure of the proposed CI-CSKA shown in Fig. 2 in more

detail. The adder contains two N bits inputs, A and B, and Q stages. Each stage consists of an RCA

block with the size of Mj (j = 1, . . . , Q). In this structure, the carry input of all the RCA blocks, except

for the first block which is Ci , is zero (concatenation of the RCA blocks). Therefore, all the blocks

execute their jobs simultaneously. In this structure, when the first block computes the summation of its

corresponding input bits (i.e., SM1, . . . , S1), and C1, the other blocks simultaneously compute the

intermediate results [i.e., {ZK j+Mj , . . . , ZK j+2, ZK j+1} for K j = _j−1 r=1 Mr (j = 2, . . . , Q)], and

also Cj signals. In the proposed structure, the first stage has only one block, which is RCA. The stages 2

to Q consist of two blocks of RCA and incrementation. The incrementation block uses the

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

Fig4: CI-CSKA structure.

intermediate results generated by the RCA block and the carry output of the previous stage to calculate

the final summation of the stage. The internal structure of the incrementation block, which contains a

chain of half-adders (HAs), is shown in Fig. 4. In addition, note that, to reduce the delay considerably,

for computing the carry output of the stage, the carry output of the incrementation block is not used. As

shown in Fig. 2, the skip logic determines the carry output of the j th stage (CO, j) based on the

intermediate results of the j th stage and the carry output of the previous stage (CO, j−1) as well as the

carry output of the corresponding RCA block (Cj). When determining CO, j , these cases may be

encountered. When Cj is equal to one, CO, j will be one. On the other hand, when Cj is equal to zero,

if the product of the intermediate results is one (zero), the value of CO, j will be the same as CO, j−1

(zero). The reason for using both AOI and OAI compound gates as the skip logics is the inverting

functions of these gates in standard cell libraries. This way the need for an inverter gate, which increases

the power consumption and delay, is eliminated. As shown in Fig., if an AOI is used as the skip logic,

the next skip logic should use OAI gate. In addition, another point to mention is that the use of the

proposed skipping structure in the Conv-CSKA structure increases the delay of the critical path

considerably. This originates from the fact that, in the Conv-CSKA, the skip logic (AOI or OAI

compound gates) is not able to bypass the zero carry input until the zero carry input propagates from

the corresponding RCA block. To solve this problem, in the proposed structure, we have used an RCA

block with a carry input of zero (using the concatenation approach). This way, since the RCA block of

the stage does not need to wait for the carry output of the previous stage, the output carries of the blocks

are calculated in parallel. As mentioned before, the use of the static AOI and OAI gates (six

transistors) compared with the static 2:1 multiplexer (12 transistors), leads to decreases in the area usage

and delay of the skip logic. In addition, except for the first RCA block, the carry input for all other

blocks is zero, and hence, for these blocks, the first adder cell in the RCA chain is a HA.

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

RESULTS:

Above figure shows base paper method simulation result taken in XILINX-ISE 14.7 with three

operand addition using one three operand adder.

Above figure shows proposed carry skip adder simulation result taken in XILINX-ISE 14.7 with three

operand addition using 2 two operand adders.

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

CONCLUSION and FUTURE SCOPE: In this paper, a high-speed area-efficient adder technique and

its VLSI architecture is proposed to perform the three operand binary addition for efficient

computation. The proposed three-operand adder technique is a parallel prefix adder that uses four-

stage structures to compute the addition of three input operands. The novelty of this proposed

architecture is the reduction of delay and area in the prefix computation stages in PG logic and bit-

addition logic. As an extension of this concept, a static CMOS CSKA structure called CI-CSKA was

proposed, which exhibits a higher speed and lower energy consumption compared with those of the

conventional one. The speed enhancement was achieved by modifying the structure through the

concatenation and incrimination techniques. In addition, AOI and OAI compound gates were

exploited for the carry skip logics. In the future work, further research will be done by applying dual-

path FP architecture to the three-operand FP adder and using other redundant FP representations. Use

of improved techniques in the termination phase of the design (i.e., redundant LZD, normalization, and

rounding) would lead to faster architectures, though higher area costs are expected.

REFERENCES:

[1] S. Yu and E. E. Swartzlander, “DCT implementation with distributed arithmetic”, IEEE

Transactions on Computers, vol. 50, no. 9, pp. 985–991, Sept. 2001.

[2] T.-S. Chang, C. Chen, and C.-W. Jen, “New distributed arithmetic algorithm and its application to

IDCT,” IEE Proceedings Circuits, Devices and Systems, vol. 146, no. 4, pp. 159–163, Aug. 1999.

[3] T.-S. Chang and C.-W. Jen, “Hardware-efficient implementations for discrete function transforms

using LUT-based FPGAs,” IEE Proceedings Circuits, Devices and Systems, vol.146, no. 6, pp. 309–

315, Nov. 1999.

[4] F. de Dinechin, H. D. Nguyen and B. Pasca, Pipelined FPGA Adders, LIP Research Report no.

ensl00475780, Apr. 2010.

[5] J. Hormigo, M. Ortiz, F. Quiles, F. J. Jaime, J. Villalba and E.L. Zapata, Efficient Implementation of

CarrySave Adders in FPGAs, 20th IEEE international Conference on Application-Specific Systems,

Architectures and Processors, pp. 207–210, Jul. 2009.

[6] P. M. Martinez, V. Javier, and B. Eduardo, On the design of FPGA-based Multioperand Pipeline

Adders, XII Design of Circuits and Integrated System Conference, 1997.

[7] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient Synthesis of Compressor Trees on FPGAs,”

in Asia and South Pacific Design Automation Conference (ASPDAC). IEEE, 2008, pp. 138–143. [8]

Xilinx Inc., Virtex-6 User Guide, 2009, http://www.xilinx.com/. [9] S. Xing and W. H. Yu, FPGA

Adders: Performance Evaluation and Optimal Design, IEEE Design and Test of Computers, vol. 15,

no. 1, pp. 24–29, Jan.- Mar. 1998.

[10] R. D. Kenney and M. J. Schulte, “High-Speed Multioperand Decimal Adders”, IEEE Transactions

on Computers, vol. 54, no. 8, pp. 953-963, Aug. 2005.

Copyright @ 2021 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.01, September -2021, Pages: 129-131

[11] J. Villalba, J. Hormigo, J. M. Prades and E. L. Zapata, “On–line Multioperand Addition Based on

On–line Full Adders∗”, in Proc. Int. Conf. on ApplicationSpecific Systems, Architecture Processors

(ASAP'05), pp. 322-327, 2005

[12] M. Ortiz, F. Quiles, J. Hormigo, F. J. Jaime, J. Villalba, and E. L. Zapata, “Efficient

Implementation of CarrySave Adders in FPGAs,” in IEEE International Conference on Application-

specific Systems Architectures and Processors (ASAP), 2009, pp. 207– 210.

[13] W. Kamp, A. Bainbridge-Smith, and M. Hayes, “Efficient Implementation of Fast Redundant

Number Adders for Long Word- Lengths in FPGAs,” in 2009 International Conference on Field-

Programmable Technology (FPT). IEEE, 2009, pp. 239–246. [14] J. Hormigo, J. Villalba, and E. L.

Zapata, “Multioperand Redundant Adders on FPGAs,” submitted to IEEE Transactions on

Computers, vol. 62, no. 10, pp. 2013– 2025, 2013.

[15] S. D. Thabah; M. Sonowal and P. Saha ,“EXPERIMENTAL STUDIES ON MULTI-

OPERAND ADDERS”, INTERNATIONAL JOURNAL ON SMART SENSING AND

INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

[16] S. Singh and D. Waxman, “Multiple Operand Addition and Multiplication”, IEEE Transactions

on Computers, vol. C-22, no. 2, pp. 113-120, Feb. 1973. [17] C. Wallace, “A Suggestion for a Fast

Multiplier,” IEEE Transactions on Electronic Computers, no. 1, pp. 14– 17, 1964.

[18] L. Dadda, “Some Schemes For Parallel Multipliers,” Alta Frequenza, vol. 45, no. 5, pp. 349–356,

1965.

[19] A. Omondi and B. Premkumar, Residue Number Systems: Theory and Implementation. Imperial

College Press, 2007.

[20] A. R. Meo, “Arithmetic Networks and Their Minimization Using a New Line of Elementary

Units,” submitted to IEEE Transactions on Computers and currently under review, vol. C-24, no. 3, pp.

258– 280, 1975.

[21] K.A.C. Bickerstaff, M. Schulte, and E.E. Swartzlander, “Reduced area multipliers,” in Application-

Specific Array Processors, 1993

[22] Suhas B. Shirol, S. Ramakrishna and Rajashekar B. Shettar, “Design and Implementation of

Adders and Multiplier in FPGA Using ChipScope: A Performance Improvement”, Information and

Communication Technology for Competitive Strategies pp 11-19, 31 August 2018

